
60730-1 © IEC:2013 – 191 –

Table H.1 (2 of 6)

Component
 b

 Fault/error Software class Example of acceptable measures
c d e

 Definitions

B C

1.4

Addressing DC fault rq Comparison of redundant CPUs by either:

 – reciprocal comparison H.2.18.15

 – independent hardware comparator; or H.2.18.3

 Internal error detection; or H.2.18.9

 periodic self-test using a testing pattern of H.2.16.7

 the address lines; or H.2.18.22

 full bus redundancy, or H.2.18.1.1

 multi-bit bus parity H.2.18.1.2

1.5

Data paths DC fault rq Comparison of redundant CPUs by either:

instruction and reciprocal comparison, or H.2.18.15

decoding execution independent hardware comparator, or H.2.18.3

 Internal error detection, or H.2.18.9

 periodic self-test using a testing pattern, or H.2.16.7

 data redundancy, or H.2.18.2.1

 multi-bit bus parity H.2.18.1.2

2.

Interrupt No interrupt rq Functional test; or H.2.16.5

handling and or too time-slot monitoring H.2.18.10.4

execution frequent

 interrupt

 No interrupt rq Comparison of redundant functional

 or too channels by either

 frequent reciprocal comparison, H.2.18.15

 interrupt independent hardware comparator, or H.2.18.3

 related to Independent time-slot and logical
monitoring

H.2.18.10.3

 different

 sources

https://www.equipmentnorm.com/IEC/913415153/IEC-60730-1?src=spdf

 – 192 – 60730-1 © IEC:2013

Table H.1 (3 of 6)

Component
 b

 Fault/error Software class Example of acceptable measures
c d e

 Definitions

B C

3.

Clock rq Frequency monitoring, or H.2.18.10.1

 time slot monitoring H.2.18.10.4

 Wrong rq Frequency monitoring, or H.2.18.10.1

 frequency time-slot monitoring, or H.2.18.10.4

 (for quartz comparison of redundant functional channels

 synchronized by either:

 clock: – reciprocal comparison H.2.18.15

 harmonics/ – independent hardware comparator H.2.18.3

 subharmonics

 only)

4. Memory

4.1

Invariable All single bit rq Periodic modified checksum; or H.2.19.3.1

memory faults multiple checksum, or H.2.19.3.2

 word protection with single bit redundancy H.2.19.8.2

 99,6 % rq Comparison of redundant CPUs by either:

 coverage of – reciprocal comparison H.2.18.15

 all
information

 – independent hardware comparator, or H.2.18.3

 errors redundant memory with comparison, or H.2.19.5

 periodic cyclic redundancy check, either

 – single word H.2.19.4.1

 – double word, or H.2.19.4.2

 word protection with multi-bit redundancy H.2.19.8.1

4.2

Variable DC fault rq Periodic static memory test, or H.2.19.6

memory word protection with single bit redundancy H.2.19.8.2

 DC fault rq Comparison of redundant CPUs by either:

 and dynamic – reciprocal comparison H.2.18.15

 cross links – independent hardware comparator, or H.2.18.3

 redundant memory with comparison, or H.2.19.5

 periodic self-tests using either:

 – walkpat memory test H.2.19.7

 – Abraham test H.2.19.1

 – transparent GALPAT test, or H.2.19.2.1

 word protection with multi-bit redundancy H.2.19.8.1

https://www.equipmentnorm.com/IEC/913415153/IEC-60730-1?src=spdf

60730-1 © IEC:2013 – 193 –

Table H.1 (4 of 6)

Component
 b

 Fault/error Software class Example of acceptable measures
c d e

 Definitions

B C

4.3

Addressing Stuck at rq Word protection with single bit redundancy H.2.19.18.2

(relevant to including the address, or

variable DC fault rq comparison of redundant CPUs by either:

memory and – reciprocal comparison, or H.2.18.15

invariable – independent hardware comparator, or H.2.18.3

memory) full bus redundancy H.2.18.1.1

 Testing pattern, or

 periodic cyclic redundancy check, either: H.2.18.22

 – single word H.2.19.4.1

 – double word, or H.2.19.4.2

 word protection with multi-bit redundancy
including the address

H.2.19.8.1

5. Internal data
path

5.1 Data

Stuck at

rq

Word protection with single bit redundancy

H.2.19.8.2

 DC fault rq Comparison of redundant CPUs by either:

 – reciprocal comparison H.2.18.15

 – independent hardware comparator, or H.2.18.3

 word protection with multi-bit redundancy H.2.19.8.1

 including the address, or data redundancy, or H.2.18.2.1

 testing pattern, or H.2.18.22

 protocol test H.2.18.14

5.2 Addressing Wrong
address

rq Word protection with single bit redundancy
including the address

H.2.19.8.2

 Wrong rq Comparison of redundant CPUs by:

 address and – reciprocal comparison H.2.18.15

 multiple – independent hardware comparator, or H.2.18.3

 addressing word protection with multi-bit redundancy,
including the address, or full bus
redundancy; or testing pattern including the
address

H.2.19.8.1
H.2.18.1.1
H.2.18.22

6
External
communication

Hamming
distance 3

rq

Word protection with multi-bit redundancy,
or CRC – single word , or

H.2.19.8.1
H.2.19.4.1

 transfer redundancy, or H.2.18.2.2

 protocol test H.2.18.14

https://www.equipmentnorm.com/IEC/913415153/IEC-60730-1?src=spdf

 – 194 – 60730-1 © IEC:2013

Table H.1 (5 of 6)

Component
 b

 Fault/error Software class Example of acceptable measures
c d e

 Definitions

B C

6.1
Data

Hamming
distance 4

rq

CRC – double word, or

H.2.19.4.2

 data redundancy or comparison of redundant
functional channels by either:

H.2.18.2.1

 – reciprocal comparison H.2.18.15

 – independent hardware comparator H.2.18.3

6.2 Wrong rq Word protection with multi-bit redundancy, H.2.19.8.1

Addressing address including the address, or CRC – single word H.2.19.4.1

 including the addresses, or

 transfer redundancy or H.2.18.2.2

 protocol test H.2.18.14

 Wrong and rq CRC – double word, including the address, or H.2.19.4.2

 multiple full bus redundancy of data and address, or H.2.18.1.1

 addressing comparison of redundant communication
channels by either:

 – reciprocal comparison H.2.18.15

 – independent hardware comparator H.2.18.3

6.3
Timing

Wrong point
in time

rq Time-slot monitoring, or
scheduled transmission

H.2.18.10.4
H.2.18.18

 rq Time-slot and logical monitoring, or H.2.18.10.3

 comparison of redundant communication
channels by either:

 – reciprocal comparison H.2.18.15

 – independent hardware comparator H.2.18.3

 Wrong rq Logical monitoring, or H.2.18.10.2

 sequence time-slot monitoring, or H.2.18.10.4

 scheduled transmission H.2.18.18

 rq (same options as for wrong point in time)

7.

Input/output Fault rq Plausibility check H.2.18.13

periphery conditions

 specified in rq Comparison of redundant CPUs by either:

 Clause H.27 – reciprocal comparison H.2.18.15

 – independent hardware comparator, or H.2.18.3

7.1
Digital I/O

input comparison, or

H.2.18.8

 multiple parallel outputs; or H.2.18.11

 output verification, or H.2.18.12

 testing pattern, or H.2.18.22

 code safety H.2.18.2

https://www.equipmentnorm.com/IEC/913415153/IEC-60730-1?src=spdf

60730-1 © IEC:2013 – 195 –

Table H.1 (6 of 6)

Component
 b

 Fault/error Software class Example of acceptable measures
c d e

 Definitions

B C

7.2

Analog I/O

7.2.1 A/D- and Fault
conditions

rq Plausibility check H.2.18.13

D/A- convertor specified in rq Comparison of redundant CPUs by either:

 Clause H.27 – reciprocal comparison H.2.18.15

 – independent hardware comparator, or H.2.18.3

 input comparison, or H.2.18.8

 multiple parallel outputs, or H.2.18.11

 output verification, or H.2.18.12

 testing pattern H.2.18.22

7.2.2 Analog
multiplexer

Wrong
addressing

rq Plausibility check H.2.18.13

 rq Comparison of redundant CPUs by either:

 – reciprocal comparison H.2.18.15

 – independent hardware comparator, or H.2.18.3

 input comparison or H.2.18.8

 testing pattern H.2.18.22

8.
Monitoring

Any output

rq

Tested monitoring, or

H.2.18.21

devices and outside the redundant monitoring and comparison, or H.2.18.17

comparators static and error recognizing means H.2.18.6

 dynamic

 functional

 specification

9.
Custom

Any output

rq

Periodic self-test

H.2.16.6

chips f outside the

for example,
ASIC,

static and rq Periodic self-test and monitoring, or H.2.16.7

GAL, Gate dynamic dual channel (diverse) with comparison, or H.2.16.2

array functional error recognizing means H.2.18.6

 specification

CPU: Central programmation unit

rq: Coverage of the fault is required for the indicated software class.

a Table H.1 is applied according to the requirements of H.11.12 to H.11.12.2.12 inclusive.

b For fault/error assessment, some components are divided into their subfunctions.

c For each subfunction in the table, the software class C measure will cover the software class B fault/error.

d It is recognized that some of the acceptable measures provide a higher level of assurance than is required
by this standard.

e Where more than one measure is given for a subfunction, these are alternatives.

f To be divided as necessary by the manufacturer into subfunctions.

H.11.12.2.5 Measures others than those specified in H.11.12.2.4 are permitted if they can be

shown to satisfy the requirements listed in Table H.1.

https://www.equipmentnorm.com/IEC/913415153/IEC-60730-1?src=spdf

 – 196 – 60730-1 © IEC:2013

H.11.12.2.6 Software fault/error detection shall occur not later than the time declared in
requirement 71 of Table 1. The acceptability of the declared time(s) is evaluated during the
fault analysis of the control.

Part 2 standards may limit this declaration.

H.11.12.2.7 For controls with functions, classified as Class B or C, detection of a fault/error
shall result in the response declared in Table 1, requirement 72. For controls with functions
declared as class C, independent means capable of performing this response shall be

provided.

H.11.12.2.8 The loss of dual channel capability is deemed to be an error in a control
function using a dual channel structure with software class C.

H.11.12.2.9 The software shall be referenced to relevant parts of the operating sequence

and the associated hardware functions.

H.11.12.2.10 Where labels are used for memory locations, these labels shall be unique.

H.11.12.2.11 The software shall be protected from user alteration of safety-related
segments and data.

H.11.12.2.12 The software and safety-related hardware under its control shall be initialized

to, and terminate at, a declared state as indicated in Table 1, requirement 66.

H.11.12.3 Measures to avoid errors

Control functions with software class C shall have one of the following structures.

For controls with software class B or C, means shall be provided for the recognition and
control of errors in transmissions to external safety-related data paths. Such means shall
take into account errors in data, addressing, transmission timing and sequence of protocol.

H.11.12.3.1 General

For controls with software class B or C the measures shown in Figure H.1 to avoid
systematic faults shall be applied.

Measures used for software class C are inherently acceptable for software class B.

The content of this is extracted from IEC 61508-3 and adapted to the needs of this standard.

https://www.equipmentnorm.com/IEC/913415153/IEC-60730-1?src=spdf

60730-1 © IEC:2013 – 197 –

Figure H.1 – V-Model for the software life cycle

Other methods are possible if they incorporate disciplined and structured processes including
design and test phases.

H.11.12.3.2 Specification

H.11.12.3.2.1 Software safety requirements

H.11.12.3.2.1.1 The specification of the software safety requirements shall include:

– a description of each safety related function to be implemented, including its response
time(s):

• functions related to the application including their related software classes;

• functions related to the detection, annunciation and management of software or
hardware faults;

– a description of interfaces between software and hardware;

– a description of interfaces between any safety and non-safety related functions.

Examples of techniques/measures can be found in Table H.2.

Table H.2 – Semi-formal methods

Technique/Measure References (informative)

Standards identification

Semi-formal methods

− Logical/functional block diagrams

− Sequence diagrams

− Finite state machines/state transition diagrams

− Decision/truth tables

B.2.3.2 of IEC 61508-7:2010

C.6.1 of IEC 61508-7:2010

Other methods to comply with the requirements can be applied.

IEC 2510/13

https://www.equipmentnorm.com/IEC/913415153/IEC-60730-1?src=spdf

 – 198 – 60730-1 © IEC:2013

H.11.12.3.2.2 Software architecture

H.11.12.3.2.2.1 The description of software architecture shall include the following aspects:

– techniques and measures to control software faults/errors (refer to H.11.12.2);

– interactions between hardware and software;

– partitioning into modules and their allocation to the specified safety functions;

– hierarchy and call structure of the modules (control flow);

– interrupt handling;

– data flow and restrictions on data access;

– architecture and storage of data;

– time based dependencies of sequences and data.

Examples of techniques/measures can be found in Table H.3.

Table H.3 – Software architecture specification

Technique/Measure References (informative)

Fault detection and diagnosis C.3.1 of IEC 61508-7:2010

Semi-formal methods:

− Logic/function block diagrams

− Sequence diagrams

− Finite state machines/state transition diagrams

− Data flow diagrams

B.2.3.2 of IEC 61508-7:2010

C.2.2 of IEC 61508-7:2010

H.11.12.3.2.2.2 The architecture specification shall be verified against the specification of
the software safety requirements by static analysis.

NOTE Acceptable methods for static analysis are:

– control flow analysis;

– data flow analysis;

– walk-throughs/design reviews.

H.11.12.3.2.3 Module design and coding

NOTE 1 The use of computer aided design tools is accepted.

NOTE 2 For Defensive Programming (for example, range checks, check for division by 0, plausibility checks),
see C.2.5 of IEC 61508-7:2010.

H.11.12.3.2.3.1 Based on the architecture design, software shall be suitably refined into
modules. Software module design and coding shall be implemented in a way that is traceable
to the software architecture and requirements.

The module design shall specify:

– function(s),

– interfaces to other modules,

– data.

Examples of techniques/measures can be found in Table H.4.

https://www.equipmentnorm.com/IEC/913415153/IEC-60730-1?src=spdf

60730-1 © IEC:2013 – 199 –

Table H.4 – Module design specification

Technique/Measure References (informative)

Limited size of software modules C.2.9 of IEC 61508-7:2010

Information hiding/encapsulation C.2.8 of IEC 61508-7:2010

One entry/one exit point in subroutines and functions C.2.9 of IEC 61508-7:2010

Fully defined interface C.2.9 of IEC 61508-7:2010

Semi-formal methods:

− Logic/function block diagrams

− Sequence diagrams

− Finite state machines/state transition diagrams

− Data flow diagrams

B.2.3.2 of IEC 61508-7:2010

C.2.2 of IEC 61508-7:2010

H.11.12.3.2.3.2 Software code shall be structured.

NOTE Structural complexity can be minimized by applying the following principles:

– keep the number of possible paths through a software module small, and the relation between the input and
output parameters as simple as possible;

– avoid complicated branching and, in particular, avoid unconditional jumps (GOTO) in higher level languages;

– where possible, relate loop constraints and branching to input parameters;

– avoid using complex calculations as the basis of branching and loop decisions.

Examples of techniques/measures can be found in Table H.5.

Table H.5 – Design and coding standards

Technique/Measure References (informative)

Use of coding standard (see H.11.12.3.2.4) C.2.6.2 of IEC 61508-7:2010

No use of dynamic objects and variables (see Note) C.2.6.3 of IEC 61508-7:2010

Limited use of interrupts C.2.6.5 of IEC 61508-7:2010

Limited use of pointers C.2.6.6 of IEC 61508-7:2010

Limited use of recursion C.2.6.7 of IEC 61508-7:2010

No unconditional jumps in programs in higher level languages C.2.6.2 of IEC 61508-7:2010

Dynamic objects and/or variables are allowed if a compiler is used which ensures that sufficient memory for all
dynamic objects and/or variables will be allocated before runtime, or which inserts runtime checks for the correct
online allocation of memory.

H.11.12.3.2.3.3 Coded software shall be verified against the module specification, and the

module specification shall be verified against the architecture specification by static analysis.

NOTE Examples of methods for static analysis are:

– control flow analysis;

– data flow analysis;

– walk-throughs/design reviews.

H.11.12.3.2.4 Design and coding standards

Program design and coding standards shall be consequently used during software design and
maintenance.

Coding standards shall specify programming practice, proscribe unsafe language features,
and specify procedures for source code documentation as well as for data naming
conventions.

https://www.equipmentnorm.com/IEC/913415153/IEC-60730-1?src=spdf

 – 200 – 60730-1 © IEC:2013

H.11.12.3.3 Testing

H.11.12.3.3.1 Module design (software system design, software module design and
coding)

H.11.12.3.3.1.1 A test concept with suitable test cases shall be defined based on the module

design specification.

H.11.12.3.3.1.2 Each software module shall be tested as specified within the test concept.

H.11.12.3.3.1.3 Test cases, test data and test results shall be documented.

H.11.12.3.3.1.4 Code verification of a software module by static means includes such
techniques as software inspections, walk-throughs, static analysis and formal proof.

Code verification of a software module by dynamic means includes functional testing, white-
box testing and statistical testing.

It is the combination of both types of evidence that provides assurance that each software
module satisfies its associated specification.

Examples of techniques/measures can be found in Table H.6.

Table H.6 – Software module testing

Technique/Measure References (informative)

Dynamic analysis and testing:

− Test case execution from boundary value analysis

− Structure-based testing

B.6.5 of IEC 61508-7:2010

C.5.4 of IEC 61508-7:2010

C.5.8 of IEC 61508-7:2010

Data recording and analysis C.5.2 of IEC 61508-7:2010

Functional and black-box testing:

− Boundary value analysis

− Process simulation

B.5.1, B.5.2 of IEC 61508-7:2010

C.5.4 of IEC 61508-7:2010

C.5.18 of IEC 61508-7:2010

Performance testing:

− Avalanche/stress testing

− Response timings and memory constraints

C.5.20 of IEC 61508-7:2010

C.5.21 of IEC 61508-7:2010

C.5.22 of IEC 61508-7:2010

Interface testing C.5.3 of IEC 61508-7:2010

NOTE Software module testing is a verification activity.

H.11.12.3.3.2 Software integration testing

H.11.12.3.3.2.1 A test concept with suitable test cases shall be defined based on the

architecture design specification.

H.11.12.3.3.2.2 The software shall be tested as specified within the test concept.

H.11.12.3.3.2.3 Test cases, test data and test results shall be documented.

Examples of techniques/measures can be found Table H.7.

https://www.equipmentnorm.com/IEC/913415153/IEC-60730-1?src=spdf

